
Immersion and Presence
in digital realities

1

Virtual Reality

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

2

“Cyberspace. A consensual hallucination experienced
daily by billions of legitimate operators, in every
nation, by children being taught mathematical
concepts... A graphic representation of data abstracted
from banks of every computer in the human system.
Unthinkable complexity. Lines of light ranged in the
nonspace of the mind, clusters and constellations of
data. Like city lights, receding...”

― William Gibson, Neuromancer (1984)

What is… the Matrix?

What is Virtual Reality?

3

Immersion is the art and technology of surrounding
the user with a virtual context, such that there’s
world above, below, and all around them.

Presence is the visceral reaction to a convincing
immersion experience. It’s when immersion is so
good that the body reacts instinctively to the
virtual world as though it’s the real one.

When you turn your head to look up at the attacking
enemy bombers, that’s immersion; when you can’t
stop yourself from ducking as they roar by
overhead, that’s presence.

Top: HTC Vive (Image creduit: Business Insider)
Middle: The Matrix (1999)
Bottom: Google Daydream View (2016)

The “Sword of Damocles” (1968)

4

In 1968, Harvard Professor
Ivan Sutherland, working
with his student Bob Sproull,
invented the world’s first
head-mounted display, or
HMD.

“The right way to think about
computer graphics is that the
screen is a window through which
one looks into a virtual world.
And the challenge is to makes the
world look real, sound real, feel
real and interact realistically.”

-Ivan Sutherland (1965)

Our eyes and brain compute depth cues from many
different signals:

● Binocular vision (“stereopsis”)
The brain merges two images into one with depth
○ Ocular convergence
○ Shadow stereopsis

● Perspective
Distant things are smaller

● Parallax motion and occlusion
Things moving relative to each other, or in front of each other, convey depth

● Texture, lighting and shading
We see less detail far away; shade shows shape; distant objects are fainter

● Relative size and position and connection to the ground
If we know an object’s size we can derive distance, or the reverse; if an
object is grounded, perspective on the ground anchors the object’s distance

Distance and Vision

5Image: Pere Borrell del Caso’s Escapando la Critica (“Escaping Criticism”) (1874)

6

Perspective

Ambient
shadows

Occlusion

Shadows

Image credit: Scott Murray

Murray, Boyaci, Kersten, The
representation of perceived
angular size in human
primary visual cortex, Nature
Neuroscience (2006)

Binocular display

7

Today’s VR headsets work by
presenting similar, but different,
views to each eye

Each eye sees an image of the virtual
scene from that eye’s point of view
in VR

This can be accomplished by rendering
two views to one screen (Playstation
VR, Google Daydream) or two
dedicated displays (Oculus Rift,
HTC Vive)

Top: Davis, Bryla, Benton, Oculus Rift in Action (2014)
Bottom: Oculus DK1 demo scene “Tuscanny”

Teardown of an Oculus Rift CV1

8Teardown of an Oculus Rift CV1 showing details of lenses and displays
https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612

https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612

Accounting for lens effects

9Image credit: Davis, Bryla, Benton,
Oculus Rift in Action (2014)

Lenses bend light: the lenses in
the VR headset warp the
image on the screen, creating
a pincushion distortion.

This is countered by first
introducing a barrel
distortion in the GPU shader
used to render the image.

The barrel-distorted image
stretches back to full size
when it’s seen through the
headset lenses.

Accelerometer and electromagnetic sensors in the headset track
the user’s orientation and acceleration. VR software
converts these values to a basis which transforms the scene.

Ex: WebVR API:
interface VRPose {

 readonly attribute Float32Array? position;

 readonly attribute Float32Array? linearVelocity;

 readonly attribute Float32Array? linearAcceleration;

 readonly attribute Float32Array? orientation;

 readonly attribute Float32Array? angularVelocity;

 readonly attribute Float32Array? angularAcceleration;

};

Sensors

10
Top: 6DoF (6 degrees of freedom) - Wikipedia
Bottom: Roll (Z), Pitch (X) and Yaw (Y) - Google Design

https://w3c.github.io/webvr/
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-position
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-linearacceleration
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-orientation
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularvelocity
https://w3c.github.io/webvr/archive/prerelease/1.1/#dom-vrpose-angularacceleration

Sensor fusion

Problem: Even the best accelerometer can’t detect all
motion. Over a few seconds, position will drift.

Solution: Advanced headsets also track position with
separate hardware on the user’s desk or walls.

● Oculus Rift: “Constellation”, a desk-based IR
camera, tracks a pattern of IR LEDs on the headset

● HTC Vive: “base station” units track user in room
● Playstation VR: LEDs captured by PS camera

The goal is to respond in a handful of milliseconds
to any change in the user’s position or orientation,
to preserve presence.

11Top: Constellation through an IR-enabled camera (image credit: ifixit.com)
Bottom: HTC Vive room setup showing two base stations (image credit: HTC)

http://ifixit.com

Sensors - how fast is fast?

● To preserve presence, the rendered image must respond
to changes in head pose faster than the user can perceive

● That’s believed to be about 20ms, so no HMD can have a
framerate below 50hz

● Most headset display hardware has a higher framerate
○ The Rift CV1 is locked at 90hz
○ Rift software must exceed that framerate
○ Failure to do so causes ‘judder’ as frames are lost
○ Judder leads to nausea, nausea leads to hate, hate leads to the

dark side

12

Dealing with latency: sensor prediction

A key immersion improvement is to predict the future basis.
This allows software to optimize rendering.

● At time t, head pos = X, head velocity = V, head
acceleration = A

● Human heads do not accelerate very fast
● Rendering a single frame takes dt milliseconds
● At t + dt, we can predict pos = X + Vdt + ½ Adt2

● By starting to render the world from the user’s predicted
head position, when rendering is complete, it aligns with
where there head is by then (hopefully).

Ex: The WebVR API returns predicted pose by default

13

Dealing with latency: ‘timewarp’

Another technique to deal with lost frames
is asynchronous timewarp.

● Headset pose is fetched immediately before frame
display and is used to shift the frame on the display
to compensate for ill-predicted head motion

14Image credit: Davis, Bryla, Benton,
Oculus Rift in Action (2014)

Head velocity,
acceleration captured;
head pose predicted

Rendering
first eye

Begin
frame

Rendering
second
eye

Head pose captured
again to increase
accuracy (second eye)

Final head
pose
capture

Timewarp
shifts
image

Render!

Developing for VR

Dedicated SDKs
● HTC Vive
● Oculus Rift SDK

● C++
● Bindingsfor Python, Java

● Google Daydream SDK
● Android, iOS and Unity

● Playstation VR
● Playstation dev kit

15

General-purpose SDKs
● WebGL - three.js
● WebVR API

Higher-level game
development
● Unity VR

https://www.htcvive.com/us/develop_portal
http://developer.oculus.com
https://developers.google.com/vr/daydream/overview
https://www.playstation.com/en-us/develop/
https://w3c.github.io/webvr/
https://unity3d.com/unity/multiplatform/vr-ar

“Sim sickness”

The Problem:
1. Your body says, “Ah, we’re sitting still.”
2. Your eyes say, “No, we’re moving! It’s exciting!”
3. Your body says, “Woah, my inputs disagree! I must have

eaten some bad mushrooms. Better get rid of them!”
4. Antisocial behavior ensues

The causes of simulation sickness (like motion sickness, but
in reverse) are many. Severity varies between individuals;
underlying causes are poorly understood.

16

Reducing sim sickness

The cardinal rule of VR:

1. Never take head-tracking control away from the user
2. Head-tracking must match the user’s motion
3. Avoid moving the user without direct interaction
4. If you must move the user, do so in a way that doesn’t

break presence

17

The user is in control of the camera.

How can you mitigate sim sickness?

Design your UI to reduce illness
● Never mess with the field of view
● Don’t use head bob
● Don’t knock the user around
● Offer multiple forms of camera control

○ Look direction
○ Mouse + keyboard
○ Gamepad

● Try to match in-world character height
and IPD (inter-pupilary distance) to that
of the user

● Where possible, give the user a stable
in-world reference frame that moves
with them, like a vehicle or cockpit

18

Hawken, by Meteor Entertainment (2014)

Further ways to reduce sim sickness

Design your VR world to reduce illness
● Limit sidestepping, backstepping, turning; never force the user to spin
● If on foot, move at real-world speeds (1.4m/s walk, 3m/s run)
● Don’t use stairs, use ramps
● Design to scale--IPD and character height should match world scale
● Keep the horizon line consistent, static and constant
● Avoid very large moving objects which take up most of the field of view
● Use darker textures
● Avoid flickering, flashing, or high color contrasts
● Don’t put content where they have to roll their eyes to see it
● If possible, build breaks into your VR experience
● If possible, give the user an avatar; if possible, the avatar body should react

to user motion, to give an illusion of proprioception

19

Classic user interfaces in 3D

Many classic UI paradigms
will not work if you
recreate them in VR

● UI locked to sides or corners of
the screen will be distorted by
lenses and harder to see

● Side and corner positions force
the user to roll their eyes

● Floating 3D dialogs create a
virtual plane within a virtual
world, breaking presence

● Modal dialogs ‘pause’ the world
● Small text is much harder to read

in VR

20Top: EVE Online (2003)
Bottom: Team Fortress (2007)

In-world UIs are evolving

Deus Ex Human Revolution (2011) Deus Ex Mankind Divided (2016)

21

Increasingly, UI elements are being integrated into the virtual world

The best virtual UI is in-world UI

Top left: Call of Duty: Black Ops (2010) Top right: Halo 4 (2012)
Bottom left: Crysis 3 (2013) Bottom right: Batman: Arkham Knight (2015) 22

23Strike Suit Zero (2013)

http://www.youtube.com/watch?v=FYvpo_PDu4w

24Elite: Dangerous (2014)

http://www.youtube.com/watch?v=-ZvjH430C_o

Storytelling in games

The visual language of games is often
the language of movies

● Cutscenes
● Angle / reverse-angle

conversations
● Voiceover narration
● Pans
● Dissolves
● Zooms...

In VR, storytelling by moving the
camera will not work well because
the user is the camera.

25

"It's a new communications medium. What is necessary is to
develop a grammar and syntax. It's like film. When film was
invented, no one knew how to use it. But gradually, a visual
grammar was developed. Filmgoers began to understand how
the grammar was used to communicate certain things. We have
to do the same thing with this.“

Neal Stephenson, Interface, 1994

Call of Duty: Modern Warfare 3 (2012)
The player’s helicopter has been shot down; they emerge into
gameplay, transitioning smoothly from passive to active.

Drawing the user’s attention
When presenting dramatic content in

VR, you risk the user looking
away at a key moment.

● Use audio cues, movement or
changing lighting or color to
draw focus

● Use other characters in the
scene; when they all turn to look
at something, the player will too

● Design the scene to direct the
eye

● Remember that in VR, you know
when key content is in the
viewing frustum

26

 The Emperor’s New Groove (2000)

User

V
ie

w
in

g
d

ir
ec

ti
o

n

Vie
win

g d
ire

ct
io

n
Viewing direction

Animate!

Advice for a good UI
Always display relevant state—Primary application state

should be visible to the user. For an FPS shoot-em-up,
this means showing variables like ammo count and
health. Combine audio and video for key cues such as
player injury.

Use familiar context and imagery—Don’t make your users
learn specialized terms so they can use your app. If
you’re writing a surgery interface for medical training,
don’t force medical students to learn about virtual
cameras and FOVs.

Support undo/redo—Don’t penalize your users for clicking
the wrong thing. Make undoing recent actions a primary
user interface mode whenever feasible.

Design to prevent error—If you want users to enter a value
between 1 and 10 in a box, don’t ask them to type; they
could type 42. Give them a slider instead.

Build shortcuts for expert users—The feeling that you’re
becoming an expert in a system often comes from
learning its shortcuts. Make sure that you offer combos
and shortcuts that your users can learn—but don’t
require them.

Don’t require expert understanding—Visually indicate
when an action can be performed, and provide useful
data if the action will need context. If a jet fighter pilot
can drop a bomb, then somewhere on the UI should be a
little indicator of the number of bombs remaining. That
tells players that bombs are an option and how many
they’ve got. If it takes a key press to drop the bomb,
show that key on the UI.

Keep it simple—Don’t overwhelm your users with useless
information; don’t compete with yourself for space on
the screen. Always keep your UI simple. “If you can’t
explain it to a six-year-old, you don’t understand it
yourself” (attributed to Albert Einstein).

Make error messages meaningful—Don’t force users to
look up arcane error codes. If something goes wrong,
take the time to clearly say what, and more important,
what the user should do about it.

Abridged from Usability Engineering by Jakob Nielsen
(Morgan Kaufmann, 1993)

27

An unhelpful error message

Gestural interfaces

Hollywood has been training us
for a while now to expect
gestural user interfaces.

A gestural interface uses
predetermined intuitive hand
and body gestures to control
virtual representations of
material data.

Many hand position capture
devices are in development
(ex: Leap Motion)

28

29Johnny Mnemonic (1995)

http://www.youtube.com/watch?v=l0dYS2AKBN8

30Marvel’s Agents of S.H.I.E.L.D. (2013) S01 E13

http://www.youtube.com/watch?v=Gyfq0QBhPs4

References
Developing in VR

● Fundamentals of Computer Graphics, by P. Shirley, M. Ashikhmin, and S. Marschner (A. K. Peters/CRC Press, 2009)
● Computer Graphics: Principles and Practice, by J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes (Addison-Wesley Professional, 2013)
● Oculus Rift in Action, by Davis, Bryla and Benton (2014)
● Oculus Best Practices Guide - developer.oculus.com/documentation

Motion sickness/simulator sickness

● Textbook of Maritime Medicine, by the Norwegian Centre for Maritime Medicine (2013). See chapter 20, “Motion Sickness” (textbook.ncmm.no)
● Validating an Efficient Method to Quantify Motion Sickness, by B. Keshavarz and H. Hecht (2011). Human Factors: The Journal of the Human Factors

and Ergonomics Society 53.4: 415–26.
● Simulator Sickness Questionnaire, by R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal (1993). The International Journal of Aviation

Psychology 3(3): 203–20.
● Motion Sickness Susceptibility Questionnaire Revised and Its Relationship to Other Forms of Sickness, by J. F. Golding (1998). Brain Research Bulletin,

47(5): 507–16.

UI design for VR

● 3D User Interfaces: New Directions and Perspectives, by D. A. Bowman, S. Coquillart, B. Froehlich, M. Hirose…and W. Stuerzlinger. (2008).  IEEE
Computer Graphics and Applications 28(6): 20–36.

● Design and Evaluation of Mouse Cursors in a Stereoscopic Desktop Environment, by L. Schemali and E. Eisemann (2014). 3D User Interfaces (3DUI),
2014 IEEE Symposium (pp. 67-70). IEEE. Recorded talk is available at vimeo.com/91489021

● Developing Virtual Reality Games and Experiences— www.gdcvault.com/play/1020714. Presented at GDC 2014.
● Egocentric Object Manipulation in Virtual Environments: Empirical Evaluation of Interaction Techniques, by I. Poupyrev, S. Weghorst, M. Billinghurst,

and T. Ichikawa (1998). Computer Graphics Forum, 17(3): 41–52.
● Kinect Hand Detection, by G. Gallagher—video.mit.edu/watch/kinect-hand-detection-12073
● Make It So: Interaction Design Lessons from Science Fiction, by N. Shedroff and C. Noessel (Rosenfeld Media, 2012)
● Lessons learned porting Team Fortress 2 to virtual reality—media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
● Pointing at 3D Target Projections with One-Eyed and Stereo Cursors, by R. J. Teather and W. Stuerzlinger. (2013). ACM Conference on Human

Factors in Computing Systems: 159–68.
● Pointing to the future of UI, by J. Underkoffler (2010). Talk given at TED. www.ted.com/talks/john_underkoffler_drive_3d_data_with_a_gesture
● Selection Using a One-Eyed Cursor in a Fish Tank VR Environment, by C. Ware and K. Lowther.  (1997). ACM

Transactions on Computer-Human Interaction Journal, 4(4): 309–22.
● Usability Engineering, by J. Nielsen (Morgan Kaufmann, 1993)

31

http://developer.oculus.com/documentation
http://textbook.ncmm.no/
http://vimeo.com/91489021
http://www.gdcvault.com/play/1020714
http://video.mit.edu/watch/kinect-hand-detection-12073
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
http://www.ted.com/talks/john_underkoffler_drive_3d_data_with_a_gesture

